

# Strand Testing at Fermilab

### Emanuela Barzi

- o Limits of pressure contact setup
- Contributions to contact resistance (measured and calculated)
- New sample holders design and performance



# **Upgrade of Power Supply**

LBNL-FNAL Collaboration Meeting

2 x 6680A AGILENT 895 A / 5 V DC PS IN PARALLEL

**PS LIMIT = 1815 A** 





# **Limitations of Existing Probe**



- **❖ Total contact resistance** ~ 4 µOhm
- \* An estimate of the maximum allowed contact resistance to carry 2000 A  $\sim$  1  $\mu$ Ohm



# **Total Contact Resistance - Measurement**







# R<sub>c tot</sub> averaged over 34 samples as a function of field

(Spread given by the root mean square of the distributions)



# **Total Contact Resistance**

# **Contributions**

$$R_{C \text{ tot}} = \sum R_{Cu, Brass, In} + \sum R_{soldered turns} + \sum R_{Press. contact}$$





# **Contact Resistance - Calculation**



# **Soldered contact**

$$r = \frac{\rho_{Solder, 4.2K} \cdot t_{Solder}}{\pi \cdot \phi_{Solder}} = 0.0316 \cdot 10^{-9} \Omega \cdot m$$

$$R = \frac{\rho_{Cu,4.2K}}{\pi \cdot \phi_{Cu} \cdot t_{Cu}} 0.01448 \cdot 10^{-4} \Omega / m$$

| Number<br>of turns | L<br>(mm) | R <sub>Junction</sub> $(n\Omega)$ |  |
|--------------------|-----------|-----------------------------------|--|
| 2                  | 2         | 17                                |  |
| 4                  | 4         | 9.8                               |  |
| 8                  | 8         | 7.2                               |  |



# **Contact Resistance – Measurements**



# Single contributions

Copper RRR of probe was measured = 113

|       | MEAGUEED             | OTHER CONTRIBUTIONS (Calculated at 4.2 K) |                                          |                                   | CONTACT               |
|-------|----------------------|-------------------------------------------|------------------------------------------|-----------------------------------|-----------------------|
| R     | MEASURED<br>at 4.2 K | COPPER                                    | INDIUM                                   | BRASS                             | RESISTANCE            |
| [OHM] | 40 1.2 11            | ρ <sub>Cu</sub> =1.48E-10<br><b>†</b> m   | ρ <sub>In</sub> =3.11E- 10<br><b>†</b> m | ρ <sub>Br</sub> =6 E-8 <b>†</b> m | (CORRECTED<br>FROM R) |
| R2    | 1.38E-07             | 1.45E-09                                  | 1.35E-10                                 | No brass                          | 1.36E-07              |
| R3    | 3.22E-07             | 7.27E-10                                  | 2.80E-10                                 | 1.38E-07                          | 1.83E-07              |
| R4    | 2.81E-06             | 1.98E-06                                  | No In                                    | 1.77E-07                          | 1.03E-06              |



# Comparison - Measurements vs. Calculations

LBNL-FNAL
Collaboration

| Mosting LC.                               | MEAS.                                   | CALC.                                      | CALC.                                       | MEAS.                                              |
|-------------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------------------|----------------------------------------------------|
| R <sub>Soldered</sub><br>turns<br>2 turns | R <sub>Soldered</sub> turns 2 x 2 turns | R <sub>Pressure</sub> contact Bearing area | R <sub>Pressure</sub> contact Apparent area | R <sub>Pressure</sub><br>contact<br>With<br>Indium |
| <b>17</b> nΩ                              | 34 nΩ                                   | 2.877 μΩ                                   | 0.161 μΩ                                    | 0.136 μΩ                                           |

- Excellent consistency was found between data and calculations
- By flowing within the contact surfaces, Indium makes the apparent area to be the actual contact area for current flow
- Pressure contact resistances are only about 1 order of magnitude larger than for soldered contacts

# Sample Holder Designs



## Soldered contact

- Sample ends soldered to copper lugs
- Expected contact resistance  $< 40 \text{ n}\Omega$



## Pressure contact

- Design with contact area ~ previous x4
- Expected contact resistance < 1  $\mu\Omega$





# High Current Probe - Soldered contact

### Instrumented sample





Cernox reading



Licia Del Frate's Laurea Thesis



# Measurements at Low Fields of Stable Strands

LBNL-FNAL Collaboration Meeting



# 类

# <u>Comparison - Critical Current Values</u>





Conclusion – The  $I_{c}$  measurements performed with the new probe are consistent with the regular ones



# **Contact Resistance - Calculation**



$$\begin{cases} V(x) = r \cdot \frac{dI(x)}{dx} \\ \frac{dV(x)}{dx} = I(x) \cdot R \end{cases}$$

r =Solder resistance · length

R = Cu resistance / length

# **Soldered contact**



$$V(L) = I_t \cdot (R \cdot r)^{1/2} \cdot \frac{e^{\alpha L} + e^{-\alpha L}}{e^{\alpha L} - e^{-\alpha L}} = I_t \cdot (R \cdot r)^{1/2} \cdot f(\alpha L)$$



# **Contact Resistance - Calculation**

# Pressure contact

### Force due to torque *T*

$$F = \frac{T}{0.2D} = 6667 N$$

Force due to differential thermal contraction  $\delta$ 



$$\begin{cases} L_{Cu} = L_{Ti} = L_0 = 34.9 \ mm \\ \varepsilon_{Cu} (293 - 4.2 \ K) = 0.32 \% \\ \varepsilon_{Ti} (293 - 4.2 \ K) = 0.15 \% \end{cases}$$

$$P = \frac{\delta}{\sum \frac{L_i}{A_i \cdot E_i}} = 364 \ N$$



Thread nominal diameter

Total pressure on apparent area  $A_a$ 

$$\bar{p}_a = \frac{F + P}{A_a} = 2.707 \cdot 10^7 \frac{N}{m^2}$$



# **Contact Resistance – Calculation**

# **Contact**



# Actual contact area depends on pressure

From Hertz classic formulae on elastic deformation and contact surfaces, in the case of a sphere against a plane body of same material (with Poisson ratio = 0.3):

$$a = 1.11 \cdot \sqrt[3]{\frac{P_i}{E} \cdot r} = 5.807 \cdot 10^{-7} \ m$$

 $P_i = average \quad load / hump = \overline{p}_a d^2$ 

 $r = curvature \ radius \ of \ rugosity \ elevation = 4 \cdot 10^{-5} \ m$ 

Average pressure on a sphere 
$$\bar{p} = \frac{\int_{0}^{a} \frac{1.5 \cdot P_{i}}{\pi \cdot a^{3}} \cdot \sqrt{a^{2} - x^{2}} \cdot dx}{a} = 4.816 \cdot 10^{8} \cdot \frac{N}{m^{2}}$$

Bearing area  $A_b$ 

$$A_b = \frac{1}{17.795} \cdot A_a$$

From constriction resistance of a circular conducting surface against a plane body (Kottler, Smythe):



# Effect of Contact Resistance Extrapolation to 2000 A



Conclusion - The maximum contact resistance at 2000 A is about 1  $\mu\Omega$ , which is 1/4 of present FNAL holder (~ 4  $\mu$   $\Omega$ )



# Comparison - Total Resistance of the Probes





Conclusion - The total resistance of the new probe (without SC splices yet) is already ~ 70% that of the old probe